Abstract

Computations based on the extended DLVO theory are carried out on the potential energies of interactions between air bubbles and talc particles covered by nonpolar oil. It is shown that the major role of nonpolar oil in this system is to greatly increase the depth of the primary energy valley, giving rise to a much stronger bubble–particle aggregate that can support greater aggregate–rupture force fields from turbulent flows. Also, due to nonpolar oil involvement, the energy barrier between bubbles and mineral particles sharply collapses down and further separates, indicative of a greater probability of attachment of mineral particles to air bubbles. A linear relationship is found between the primary energy valley and the contact angles of oil or bubbles, and thus a simple and approximate formula is presented to evaluate the depth of the primary energy valley. In addition, it is found that the primary energy valley and the energy barrier are directly proportional to the effective particle radius, but the barrier location is independent of the effective particle radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.