Abstract

AbstractStructural aspects of single CC bond dissociation energies are examined and it is shown that in certain cases a negative bond dissociation energy (BDE) implies a very weak bond and an unstable species prone to bond breaking resulting in dissociation or structural rearrangement. It is proposed that, in such cases, a better quantitative indicator for the strength of the bond is the activation energy required for its fission. o‐Phenelylene bis(nitrene) 1 is computed to have the most negative CC BDE for an observable species. Under cryogenic conditions, activation energy for the dissociation of this bond has been measured as only 2.8 kcal/mol, making it the weakest that we know of. An explanation based on the formation of two new bonds as responsible for this extremely weak bond is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.