Abstract

Structures and vibrational frequencies for minima and 11 transition states on the O(3P)+H2S potential energy surface have been characterized at the MP2=FULL/6-31G(d) level. GAUSSIAN-2 theory was employed to calculate ΔHf,298 for HSO and HOS of −19.9 and −5.5 kJ mol−1, respectively. The kinetics of HSO=HOS isomerization are analyzed by Rice–Ramsperger–Kassel–Marcus theory. Transition state theory analysis for O+H2S suggests OH+HS is the dominant product channel, with a rate constant given by 1.24×10−16 (T/K)1.746 exp(−1457 K/T) cm3 molecule−1 s−1. Kinetic isotope effects and the branching ratio for H+HSO production are also analyzed. The other possible products H2+SO and H2O+S do not appear to be formed in single elementary steps, but low-barrier pathways to these species via secondary reactions are identified. No bound adducts of O+H2S were found, but results for weakly bound triplet HOSH are presented. The likely kinetics for the reactions OH+SH→S(3P)+H2O, OH+SH→cis and trans 3HOSH, cis 3HOSH→HOS+H, and HSO and HOS+H→H2+3SO are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.