Abstract
We previously reported a synthetic method of spirocyclohexadienones using an Pd-catalyzed intramolecular ipso-Friedel–Crafts allylic alkylation of para-substituted phenol derivatives. However, the mechanism for the step leading to spirocyclization and driving force behind the remarkably easier formation of the five-membered spirocyclohexadienone as compared with the six-membered spirocyclohexadienone were unclear. Herein, detailed density functional theory (DFT) calculations for the spirocyclization were performed to obtain a plausible reason for the observed behavior. In addition, the mechanistic basis of the characteristic ortho-selectivity in the related Pd-catalyzed intramolecular Friedel–Crafts allylic alkylation of meta-substituted phenol derivatives was elucidated. DFT calculations and experimental studies revealed that the ortho-selective allylation proceeded via an unexpected eleven-membered oxapalladacycle-mediated intramolecular Friedel–Crafts type process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.