Abstract

A series of five organic dyes (Mi, i = 1-5) of the D-A'-π-A structure were designed based on reference dye (Ref), and the influence of different auxiliary acceptors (A') on their efficiency in dye-sensitized solar cells (DSSC). Was studied theoretically using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. In this context, the electronic structures, optical properties, and the parameters influencing the power conversion efficiency (PCE), such as light harvesting efficiency (LHE), electron injection driving force (∆Ginject.), and open circuit photo-voltage (VOC), have been evaluated and discussed.The modification of the auxiliary acceptor (A') in the D-A'-π-A structure of the designed organic dyes has the advantage of significantly decreasing the band gap, which leads to the broadening of the absorption band that is red-shifted and improves the photovoltaic characteristics compared to Ref. Theoretical results reveal that M1, and M5 can be used as excellent sensitizer candidates for DSSC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call