Abstract

To provide a deeply understanding of the nature of the emissive origin as well as the radiative and nonradiative processes, theoretical studies have been performed on four amidinate/bis(pyridylphenyl) iridium(III) complexes. It has been testified that they have exhibited bright yellowishgreen phosphorescence emission with moderate photoluminescence quantum yields. Besides geometries, electronic structure, absorption and phosphorescence spectra, and the factors governing the radiative decay rate constants of the emissive state have been examined. Additionally, this work also explores the potential energy profiles of the deactivation pathway via the triplet mental-centered states. Among these complexes, complex 2, which contains the bulky t-butyl group on the amidinate nitrogen atoms, presents the highest internal quantum yield. To explore more efficient phosphors, three novel phosphors, 2a, 2b, and 2c have been designed on the basis of complex 2 by incorporation of substituents on the bis(pyridylphenyl) ligand with a slightly higher quantum yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.