Abstract

The binding of Cu(II) to the prion protein is investigated by computations at the B3LYP level of theory on models of the octarepeat domain of the prion protein. The models incorporate the functionality of the glycine (G) and histidine (H) residues which occur in the octarepeat domain, PHGGGWGQ. The copper complexes are designated Cu[HG] and Cu[HGGG]. Coordination to the metal via the imidazole ring of the histidine, the amide carbonyl groups, and the backbone nitrogen atom of the amide groups were examined, as well as several protonation/deprotonation states of each structure. EPR and CD titration experiments suggest that the octarepeat segments of the unstructured N-terminal domain of prion protein can bind Cu(II) in a 1:1 Cu-to-octarepeat ratio. The results identify the extent to which the Cu(II) facilitates peptide backbone deprotonation, and the propensity of binding in the forward (toward the C-terminus) direction from the anchoring histidine residue. A plausible mechanism is suggested for changing from amide O-atom to deprotonated amide N-atom coordination, and for assembly of the observed species in solutions of Cu[PrP] and truncated models of it. A structure is proposed which has the N2O2 coordination pattern for the minor component observed experimentally by EPR spectroscopy for the Cu[HGGG] model. The most stable neutral Cu[HGGG] structure found, with coordination environment N3O1, corresponds to that observed for Cu[HGGGW] and Cu[HGGG] both in the solid state and as the major component in solution at neutral pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.