Abstract
Glutamine 5'-phosphoribosylpyrophosphate amidotransferase (GPATase) catalyzes the synthesis of 5'-phosphoribosylamine in a reaction that involves the translocation of ammonia along an intramolecular tunnel linking the two active sites of the enzyme. We now report a locally enhanced sampling (LES) strategy for modeling ammonia transfer between the active sites of Escherichia coli GPATase in its active conformation. Our calculations demonstrate that the ammonia channel in GPATase is best regarded as a "pipe" through which ammonia travels in the absence of an external "driving" potential. This combined LES/PMF computational approach, which offers a straightforward alternative to steered molecular dynamics simulations in studies of substrate channeling, also provides new insights into the molecular basis of the reduced ammonia transfer efficiency exhibited by the L415A GPATase mutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.