Abstract

Abstrac Kinematic and dynamic modeling of multibody systems requires an initial stage of topological recognition or structural analysis, in which the analyst must identify the model coordinates and a sufficient number of constraint equations to relate them. This initial phase could be solved quickly, safely and automatically, determining the kinematic structure of the multibody system; that is, dividing it into a set of kinematic chains called structural groups. Furthermore, structural groups are widely used for structural synthesis and so, the analysis and design of multibody systems can be integrated into the same software package. On the basis of known graph-analytical methods for structural analysis, a computational method that determines the kinematic structure of a multibody system from its adjacency matrix is developed and evaluated. This method allows the choosing of any type of coordinates (relative, natural or reference point) and the kinematic and dynamic formulations most appropriate for solving the problem. The algorithm has been applied to a large number of mechanical systems of different complexity, offering the same kinematic structure as was obtained through the application of graph-analytical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call