Abstract
We employ density functional theory and energy decomposition analysis to probe the mechanism of CH activation in dioxo-dicopper complexes. The electrophilicity of monodentate N-donor ligands coordinated to Cu is systematically varied to examine the response of barriers to the two proposed pathways - one-step oxo-insertion and two-step radical recombination. Electron-withdrawing ligand stabilize the oxo-insertion transition state via charge transfer interactions, and therefore lead to lower barriers. On the other hand, barriers to the CH activation step in the radical recombination mechanism exhibit almost no dependence on N-donor electrophilicity. Based on the similarities between calculated and experimental Hammett relationships, the oxo-insertion pathway appears to be the preferred mechanism of CH activation in dioxo-dicopper catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.