Abstract

Fully atomistic multiscale polarizable quantum mechanics (QM)/molecular mechanics (MM) approaches, combined with techniques to sample the solute-solvent phase space, constitute the most accurate method to compute spectral signals in aqueous solution. Conventional sampling strategies, such as classical molecular dynamics (MD), may encounter drawbacks when the conformational space is particularly complex, and transition barriers between conformers are high. This can lead to inaccurate sampling, which can potentially impact the accuracy of spectral calculations. For this reason, in this work, we compare classical MD with enhanced sampling techniques, i.e., replica exchange MD and metadynamics. In particular, we show how the different sampling techniques affect computed UV, electronic circular dichroism, nuclear magnetic resonance shielding, and optical rotatory dispersion of N-acetylproline-amide in aqueous solution. Such a system is a model peptide characterized by complex conformational variability. Calculated values suggest that spectral properties are influenced by solute conformers, relative population, and solvent effects; therefore, particular care needs to be paid for when choosing the sampling technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.