Abstract

Computational solvent mapping moves small organic molecules as probes around a protein surface, finds favorable binding positions, clusters the conformations, and ranks the clusters on the basis of their average free energy. Prior mapping studies of enzymes, crystallized in either substrate-free or substrate-bound form, have shown that the largest number of solvent probe clusters invariably overlaps in the active site. We have applied this method to five cytochromes P450. As expected, the mapping of two bacterial P450s, P450 cam (CYP101) and P450 BM-3 (CYP102), identified the substrate-binding sites in both ligand-bound and ligand-free P450 structures. However, the mapping finds the active site only in the ligand-bound structures of the three mammalian P450s, 2C5, 2C9, and 2B4. Thus, despite the large cavities seen in the unbound structures of these enzymes, the features required for binding small molecules are formed only in the process of substrate binding. The ability of adjusting their binding sites to substrates that differ in size, shape, and polarity is likely to be responsible for the broad substrate specificity of these mammalian P450s. Similar behavior was seen at "hot spots" of protein-protein interfaces that can also bind small molecules in grooves created by induced fit. In addition, the binding of S-warfarin to P450 2C9 creates a high-affinity site for a second ligand, which may help to explain the prevalence of drug-drug interactions involving this and other mammalian P450s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.