Abstract

A theoretical and numerical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD) free convection boundary layer flow and heat transfer in a non-Darcian, isotropic, homogenous porous medium, in the presence of Hall currents, Ionslip currents, viscous heating and Joule heating. A power-law variation is used for the temperature at the wall. The governing nonlinear coupled partial differential equations for momentum conservation in the x and z directions and heat conservation, in the flow regime are transformed from an (x, y, z) coordinate system to a (ξ,η) coordinate system in terms of dimensionless x-direction velocity (∂F/∂η) and z-direction velocity (G) and dimensionless temperature function (H) under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also local Nusselt number. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM). The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.