Abstract

Glottal resistance plays an important role in airflow conservation, especially in the context of high vocal demands. However, it remains unclear if laryngeal strategies most effective in controlling airflow during phonation are consistent with clinical manifestations of vocal hyperfunction. This study used a previously validated three-dimensional computational model of the vocal folds coupled with a respiratory model to investigate which laryngeal strategies were the best predictors of lung volume termination (LVT) and how these strategies' effects were modulated by respiratory parameters. Results indicated that the initial glottal angle and vertical thickness of the vocal folds were the best predictors of LVT regardless of subglottal pressure, lung volume initiation, and breath group duration. The effect of vertical thickness on LVT increased with the subglottal pressure-highlighting the importance of monitoring loudness during voice therapy to avoid laryngeal compensation-and decreased with increasing vocal fold stiffness. A positive initial glottal angle required an increase in vertical thickness to complete a target utterance, especially when the respiratory system was taxed. Overall, findings support the hypothesis that laryngeal strategies consistent with hyperfunctional voice disorders are effective in increasing LVT, and that conservation of airflow and respiratory effort may represent underlying mechanisms in those disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call