Abstract

Computational simulations based on periodic density functional theory have been carried out to investigate the control of crystal morphology by accurate values of surface energies by Wulff theorem. This method can be used as a very useful tool for the design and knowledge of synthesis of new materials. In a special case, rutile TiO2 phase, exhibits great variety of morphologies and properties making this system an interesting target for this approach. The low index, (100), (001), (101), (110), (111) surfaces were modeled and the respective surface energies produces the follows stability order: (110) < (010) < (101) < (001) < (111). The map of some morphologies routes was constructed from the calculated energies as a starting point without environmental influence and can be used to elucidate the influence of chemical routes. This method has helped in the knowledge of morphological modifications as a function of synthesis environment besides the connection between system characteristics and the exposed surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.