Abstract

Ash particle deposition in a high-pressure turbine stage was numerically investigated using steady Reynolds-averaged Navier-Stokes (RANS) and unsteady Reynolds-averaged Navie-Stokes (URANS) methods. An inlet temperature profile consisting of Gaussian nonuniformities (hot streaks) was imposed on the vanes, with vane cooling simulated using a constant vane wall temperature. The steady case utilized a mixing plane at the vane–rotor interface, while a sliding mesh was used for the unsteady case. Corrected speed and mass flow were matched to an experiment involving the same geometry, so that the flow solution could be validated against measurements. Particles ranging from 1 to 65 μm were introduced into the vane domain, and tracked using an Eulerian–Lagrangian tracking model. A novel particle rebound and deposition model was employed to determine particles' stick/bounce behavior upon impact with a surface. Predicted impact and capture distributions for different diameters were compared between the steady and unsteady methods, highlighting effects from the circumferential averaging of the mixing plane. The mixing plane simulation was found to generally under predict impact and capture efficiencies compared with the unsteady calculation, as well as under predict particle temperature upon impact with the blade surface. Quantitative impact and capture efficiency trends with the Stokes number are discussed for both the vane and blade, with companion qualitative distributions for the different Stokes regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call