Abstract

The article discusses a contour element method applied to numerical simulations of crack problems in elastic structures. Because the boundary integral equation degenerates for a body with two crack-surfaces occupying the same location, one of the forms of the displacement discontinuity method is implemented. According to the implemented method, resultant forces and dislocation densities, which are placed at mid-nodes of contour segments on one of the crack surfaces, are characterized by the indirect boundary integral equation. Contrarily to internal crack problems, for edge crack problems an edge-discontinuous element is used at the intersection between a crack and an edge to avoid a common node at the intersection. New numerical formulations that are built up on analytical integration are implemented. Therefore, all regular and singular integrals are evaluated only analytically. Tractions and resultant forces at a mid-node of any contour segment are regularized by a nonlocal characterization function. Hence, values of their components are obtained from the modified form of Somigliana’s identity that embraces nonlocal elements and standard elements of kernel matrices used in the boundary element analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.