Abstract

Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free approach involves a compact and cost-effective holographic on-chip microscope and a surface-functionalized glass substrate prepared to specifically capture the target viruses. To enhance the optical signatures of individual viruses and increase their signal-to-noise ratio, self-assembled polyethylene glycol based nanolenses are rapidly formed around each virus particle captured on the substrate using a portable interface. Holographic shadows of specifically captured viruses that are surrounded by these self-assembled nanolenses are then reconstructed, and the phase image is used for automated quantification of the size of each particle within our large field-of-view, ~30 mm2. The combination of viral immuno-specificity due to surface functionalization and the physical size measurements enabled by holographic imaging is used to sensitively detect and enumerate HSV particles using our compact and cost-effective platform. This computational sensing technique can find numerous uses in global health related applications in resource-limited environments.

Highlights

  • Herpes is one of the most common viral diseases, which is caused by a DNA based virus, i.e., the herpes simplex virus (HSV)

  • Addition to polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP) based methods have been used for the detection of HSV10

  • We used this wide-field holographic microscope for the detection of HSV-1 particles using a two-step process, involving both the immuno-specificity of the viral particles and their physical size properties (~150–200 nm in diameter[17, 34, 35]). This is done by first capturing the target viral particles onto a glass substrate using virus-specific antibodies, as shown in Fig. 2, and as a second step, imaging and sizing of the captured particles to confirm the presence of viruses using our holographic on-chip microscope

Read more

Summary

Introduction

Herpes is one of the most common viral diseases, which is caused by a DNA based virus, i.e., the herpes simplex virus (HSV). In this label-free sensor design, HSV-1 viral particles, which are ~150–200 nm in size, are detected using a compact holographic microscope after capturing them on specially prepared substrates, using virus-specific antibodies.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.