Abstract

Understanding how different factors affect the electronic properties of metal–organic frameworks (MOFs) is critical to understanding their potential for catalysis and to serve as catalyst supports. In this work, periodic dispersion-corrected quantum mechanical calculations are performed to assess the catalytic activity of different Zr6 vs Zr12 MOFs for the heterogeneous catalytic hydrolysis of the chemical warfare agent sarin. Using a comprehensive series of extended periodic models capable of capturing long-range sarin/water/framework interactions in both Zr6 and Zr12 MOFs, the effects of numbers and morphologies of defective sites, as well as ZrIV substitution with heavier CeIV, are thoroughly investigated. Our calculations show that hydrogen bonds involving both metal-oxide nodes and organic linkers can play important roles in the catalysis. Insights derived from this work should inform the design and realization of more effective and robust next-generation MOF-based heterogeneous catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.