Abstract
ABSTRACT Sigma-2 (σ2) receptor is a transmembrane protein shown to be linked with neurodegenerative diseases and cancer development. Thus, it emerges as a potential biological target for the advancement of anticancer and anti-Alzheimer’s agents. The current study was aimed to identify potential σ2 receptor ligands using integrated computational approaches including homology modelling, combined pharmacophore- and docking-based virtual screening, and molecular dynamics (MD) simulation. Pharmacophore-based screening was conducted against a database composed of 20,523 small natural and natural-like products. In total, 1200 structures were found to satisfy the required pharmacophore features and were then exposed to docking-based screening against the generated homology model of σ2 receptor. On the basis of the pharmacophore fit scores, docking scores, and mechanism of binding interaction, 20 potential hits were retained. Five promising candidates were selected (SR84, SR823, SR300, SR413, and SR530) on the basis of their binding score and interaction. Further, in silico ADMET profiling of these compounds showed that the selected compounds possess favourable ADME properties with low toxicity risk. The mechanism of interaction of these compounds with σ2 receptor as well as their binding stability were characterized by MD simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.