Abstract

The binding affinity of the beta-cyclodextrin (β-CyD) derivatives with Doxorubicin (Dox) is evaluated by means of the 3D-RISM/KH theory combined with the molecular dynamics simulation in order to screen the compounds for suppressing a side-effect of the cancer drug. A protocol revised for the external and conformational entropies of the host-guest system is employed to calculate the binding free energy. It is found that the direct interactions of CyD with Dox and the desolvation free-energies of the both compounds largely cancel out to leave moderate contributions to the affinity, which are comparable to those from the entropies. The results shed light on the entropy terms for determining the binding affinity, although the external-entropy terms are essentially constant over all the compounds examined and do not affect the screening. The theoretical result is compared with the experimental data of the association constant for a CyD derivative which was predicted to be the best compound by the preliminary calculation without the entropy terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.