Abstract

Protein-protein interactions play key roles in all biological processes, motivating numerous campaigns to seek small-molecule disruptors of therapeutically relevant interactions. Two decades ago, the prospect of developing small-molecule inhibitors was thought to be perhaps impossible due to the potentially undruggable nature of the protein surfaces involved; this viewpoint was reinforced by the limited successes provided from traditional high-throughput screens. To date, however, refinement of new experimental approaches has led to a multitude of inhibitors against many different targets. Having thus established the feasibility of attaining success in this valuable and diverse target space, attention now turns to incorporating computational techniques that might assist during various stages of drug design and optimization. Here we review cases in which computational approaches - virtual screening, docking, and ligand optimization - have contributed to discovery of new inhibitors of protein-protein interactions. We conclude by providing an outlook into the upcoming challenges and recent advances likely to shape this field moving forward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.