Abstract
This study is concerned with processes for discovering new theories in science. It considers a computational approach to scientific discovery, as applied to the discovery of theories in cognitive science. The approach combines two ideas. First, a process-based scientific theory can be represented as a computer program. Second, an evolutionary computational method, genetic programming, allows computer programs to be improved through a process of computational trial-and-error. Putting these two ideas together leads to a system that can automatically generate and improve scientific theories. The application of this method to the discovery of theories in cognitive science is examined. Theories are built up from primitive operators. These are contained in a theory language that defines the space of possible theories. An example of a theory generated by this method is described. These results support the idea that scientific discovery can be achieved through a heuristic search process, even for theories involving a sequence of steps. However, this computational approach to scientific discovery does not eliminate the need for human input. Human judgment is needed to make reasonable prior assumptions about the characteristics of operators used in the theory generation process, and to interpret and provide context for the computationally generated theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.