Abstract

A set of mixed differential and algebraic equations (DAEs) which arises in the simulation of a robot manipulator is solved simultaneously using implicit integration. The dimension of the DAEs which have to be solved by LU factorization at each integration step can be reduced to the number of degrees of freedom by exploring the special structure of the Jacobian matrix of DAEs. The independent and dependent generalized coordinates are determined directly from the system topology. The simulation of a 6-R manipulator is given as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.