Abstract
An increasing number of structural studies reveal alternative binding sites in protein receptors that become apparent only when an inhibitor binds, and correct prediction of these situations presents a significant challenge to computer-aided drug design efforts. A striking example is provided by recent crystal structures of the p38 MAP kinase, where a 10A movement of the Phe169 side-chain creates a new binding site adjacent to the ATP binding site that is exploited by the diaryl urea inhibitor BIRB796. Here, we show that this binding site can be successfully and repeatedly identified in explicit-solvent molecular dynamics (MD) simulations of the protein that begin from an unliganded p38 crystal structure. Ligand-docking calculations performed on 5000 different structural snapshots generated during MD indicate that the conformations sampled are often surprisingly competent to bind the inhibitor BIRB796 in the crystallographically correct position and with docked energies that are generally more favorable than those of other positions. Similar docking studies with an ATP-binding site-directed inhibitor suggest that it may be possible to develop hybrid inhibitors that target both the ATP and cryptic binding sites simultaneously. Intriguingly, both inhibitors are occasionally found to dock correctly even with p38's "DFG" motif in the "wrong" conformation and BIRB796 can successfully dock, albeit infrequently, without significant displacement of the Phe169 side-chain; this suggests that the inhibitor might facilitate the latter's conformational change. Finally, two quite different conformations of p38's DFG motif are also sampled for extended periods of time during the simulations; these may provide new opportunities for inhibitor development. The MD simulations reported here, which total 390 ns in length, therefore demonstrate that existing computational methods may be of surprising utility in predicting cryptic binding sites in protein receptors prior to their experimental discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.