Abstract

Background: Although some benzimidazole-based anthelmintic drugs are found to possess anticancer activity, their modes of binding interactions have not been reported. Methodology: In this study, we aimed to investigate the binding interactions and electronic configurations of nine benzimidazole-based anthelmintics against one of the well-known cancer targets (tubulin protein). Results: Binding affinities of docked benzimidazole drugs into colchicine-binding site were calculated where flubendazole > oxfendazole > nocodazole > mebendazole. Flubendazole was found to bind more efficiently with tubulin protein than other drugs. Quantum mechanics studies revealed that the electron density of HOMO of flubendazole and mebendazole together with their molecular electrostatic potential map are closely similar to that of nocodazole. Conclusion: Our study has ramifications for considering repurposing of flubendazole as a promising anticancer candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.