Abstract
We present computational refocusing in polarization-sensitive optical coherence tomography (PS-OCT) to improve spatial resolution in the calculated polarimetric parameters and extend the depth-of-field in phase-unstable, fiber-based PS-OCT systems. To achieve this, we successfully adapted short A-line range phase-stability adaptive optics (SHARP), a computational aberration correction technique compatible with phase-unstable systems, into a Stokes-based PS-OCT system with inter-A-line polarization modulation. Together with the spectral binning technique to mitigate system-induced chromatic polarization effects, we show that computational refocusing improves image quality in tissue polarimetry of swine eye anterior segment ex vivo with PS-OCT. The benefits, drawbacks, and potential applications of computational refocusing in anterior segment imaging are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.