Abstract
The DFT calculation of 19F NMR chemical shifts was performed for two benchmark compounds, perfluoroquinoline and perfluoroisoquinoline, each involving seven non-equivalent fluorine atoms, with using a variety of functionals and basis sets. Performed calculations provided a markedly good correlation of calculated fluorine chemical shifts with experiment. Best result was achieved for the BHandHLYP functional in combination with the quadruple zeta Jensen’s segmented basis set pcSseg-3 characterized by a mean absolute error of 2.5 ppm in the range of about 120 ppm, corresponding to a 2% error in the percentage terms. Proposed computational protocol BHandHLYP/pcSseg-3 showed a remarkably good performance on a benchmark series of eight fluorinated condensed heteroaromatic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.