Abstract

Bacteriophages play an important role in host-driven biological processes by controlling bacterial population size, horizontally transferring genes between hosts and expressing host-derived genes to alter host metabolism. Metagenomics provides the genetic basis for understanding the interplay between uncultured bacteria, their phage and the environment. In particular, viral metagenomes (viromes) are providing new insight into phage-encoded host genes (i.e. auxiliary metabolic genes; AMGs) that reprogram host metabolism during infection. Yet, despite deep sequencing efforts of viral communities, the majority of sequences have no match to known proteins. Reference-independent computational techniques, such as protein clustering, contig spectra and ecological profiling are overcoming these barriers to examine both the known and unknown components of viromes. As the field of viral metagenomics progresses, a critical assessment of tools is required as the majority of algorithms have been developed for analyzing bacteria. The aim of this paper is to offer an overview of current computational methodologies for virome analysis and to provide an example of reference-independent approaches using human skin viromes. Additionally, we present methods to carefully validate AMGs from host contamination. Despite computational challenges, these new methods offer novel insights into the diversity and functional roles of phages in diverse environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.