Abstract
This paper is concerned with the numerical evaluation of multi-echelon production systems. Each stage requires a fixed predetermined leadtime; furthermore, we assume a stochastic, stationary end-time demand process. In a previous paper, we have developed an analytical framework for determining optimal control policies for such systems under an average cost criterion. The current paper is based on this analytical theory but discusses computational aspects, in particular for serial and assembly systems. A hierarchical (exact) decomposition of these systems can be obtained by considering echelon stocks and by transforming penalty and holding costs accordingly. The one-dimensional problems arising after this decomposition however involve incomplete convolutions of distribution functions, which are only recursively defined. We develop numerical procedures for analysing these incomplete convolutions; these procedures are based on approximations of distribution functions by mixtures of Erlang distributions. Combining the analytically obtained (exact) decomposition results with these numerical procedures enables us to quickly determine optimal order-up-to levels for all stages. Moreover, expressions for the customer service level of such a multi-stage are obtained, yielding the possibility to determine policies which minimize average inventory holding costs, given a service level constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.