Abstract

A computational procedure is described for the integration of the coupled differential equations and determination of the probability matrices required for the accurate evaluation of cross sections for rotational excitation of diatomic molecules. The Arthurs–Dalgarno theory of scattering of an atom by a rigid rotator is employed. The approach developed takes advantage of several of the computational schemes used in the field of electron–atom scattering, particularly those of Smith. The principal virtue of the present computational method is its capability of generating “exact” results to serve as standards against which to compare various approximations such as sudden, dominant coupling, and distorted wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.