Abstract

Adaptation to statistics of sensory inputs is an essential ability of neural systems and extends their effective operational range. Having a broad operational range facilitates to react to sensory inputs of different granularities, thus is a crucial factor for survival. The computation of auditory cues for spatial localization of sound sources, particularly the interaural level difference (ILD), has long been considered as a static process. Novel findings suggest that this process of ipsi- and contra-lateral signal integration is highly adaptive and depends strongly on recent stimulus statistics. Here, adaptation aids the encoding of auditory perceptual space of various granularities. To investigate the mechanism of auditory adaptation in binaural signal integration in detail, we developed a neural model architecture for simulating functions of lateral superior olive (LSO) and medial nucleus of the trapezoid body (MNTB) composed of single compartment conductance-based neurons. Neurons in the MNTB serve as an intermediate relay population. Their signal is integrated by the LSO population on a circuit level to represent excitatory and inhibitory interactions of input signals. The circuit incorporates an adaptation mechanism operating at the synaptic level based on local inhibitory feedback signals. The model’s predictive power is demonstrated in various simulations replicating physiological data. Incorporating the innovative adaptation mechanism facilitates a shift in neural responses towards the most effective stimulus range based on recent stimulus history. The model demonstrates that a single LSO neuron quickly adapts to these stimulus statistics and, thus, can encode an extended range of ILDs in the ipsilateral hemisphere. Most significantly, we provide a unique measurement of the adaptation efficacy of LSO neurons. Prerequisite of normal function is an accurate interaction of inhibitory and excitatory signals, a precise encoding of time and a well-tuned local feedback circuit. We suggest that the mechanisms of temporal competitive-cooperative interaction and the local feedback mechanism jointly sensitize the circuit to enable a response shift towards contra-lateral and ipsi-lateral stimuli, respectively.

Highlights

  • Localization of a sound source in space is a crucial task for every living being that is facilitated with an auditory system, may it be for hunting or predator avoidance

  • Model simulations provide a basis for evaluating binaural stimulus integration and a quantitative analysis of the adaptation efficacy of model neurons simulating lateral superior olive (LSO) functions

  • We introduce a retrograde GABA signaling circuit to the model that dynamically alters the effective strength of the inhibitory inputs based on recent neuron activity

Read more

Summary

Author summary

Why are we more precise in localizing a sound after hearing it several times? Adaptation to the statistics of a stimulus plays a crucial role in this. The localization of a sound source in the horizontal plane is a rather complicated task since the location cannot be read out from the receptor surface but needs to be computed. This requires the underlying neural system to calculate differences of the intensity between the two ears which provide a distinct cue for the location of a sound source. Adaptation to this cue allows to focus on a specific part of auditory space and thereby facilitates improved localisation abilities. Results explain the neural basis for adaptation and indicate that the interplay between different adaptation mechanisms facilitate highly precise sound source localization in a wide range of locations

Introduction
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.