Abstract

The radiationless decay of T 1 norbornene to the singlet ground state is studied using density-functional and ab initio CASSCF calculations of the potential energy surface crossing and of the spin-orbit coupling. The rate of decay is predicted using two approximate multi-dimensional non-adiabatic methods, one of which is based on Fermi's Golden Rule, and the other is a version of RRKM theory adapted for non-adiabatic processes. Unlike a previous Landau–Zener treatment of this process by some of us [Chem. Phys. Lett. 287 (1998) 601–607], both methods correctly predict a short lifetime for the triplet excited state, in reasonable agreement with experimental data. This underlines the importance of tunnelling in non-radiative relaxation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.