Abstract

Two case reports showed that the combination of CRT and LVAD benefits the end-stage heart failure patients with prolonged QRS interval significantly. In one of the reports, the patient had the LVAD removed due to the recovery of the heart function. However, the quantification of the combined devices has yet to be conducted. This study aimed at computationally predicting the effects of CRT-only or combined with LVAD on electromechanical behaviour in the failing ventricle with left bundle branch blocked (LBBB) and right bundle branch blocked (RBBB) conditions. The subjects are normal sinus rhythm, LBBB, RBBB, LBBB with CRT-only, RBBB with CRT-only, LBBB with CRT + LVAD, and RBBB with CRT + LVAD. The results showed that the CRT-only shortened the total electrical activation time (EAT) in the LBBB and RBBB conditions by 20.2% and 17.1%, respectively. The CRT-only reduced the total mechanical activation time (MAT) and electromechanical delay (EMD) of the ventricle under LBBB by 21.3% and 10.1%, respectively. Furthermore, the CRT-only reduced the contractile adenosine triphosphate (ATP) consumption by 5%, increased left ventricular (LV) pressure by 6%, and enhanced cardiac output (CO) by 0.2 L/min under LBBB condition. However, CRT-only barely affects the ventricle under RBBB condition. Under the LBBB condition, CRT + LVAD increased LV pressure and CO by 10.5% and by 0.9 L/min, respectively. CRT + LVAD reduced ATP consumption by 15%, shortened the MAT by 23.4%, and shortened the EMD by 15.2%. In conclusion, we computationally predicted and quantified that the CRT + LVAD implementation is superior to CRT-only implementation particularly in HF with LBBB condition.

Highlights

  • Heart failure (HF) plays a major role in the number of death worldwide [1]. us, the study of heart diseases including cardiac arrhythmia, which progressively leads to HF condition, is very important

  • E electromechanical model consisted of electrophysiological and myofilament dynamics model coupled by Ca2+ transient. e left ventricular assist device (LVAD) function included the circulatory systems, which connected to the 3D ventricular mechanics

  • E electrical stimulation was first induced at the root node of Purkinje fiber model, which propagates to the terminals, stimulating the ventricular tissue. e electrical propagation in the Purkinje can be described by solving a one-dimensional wave propagation equation and triggered the ventricular activation [40]

Read more

Summary

Introduction

Heart failure (HF) plays a major role in the number of death worldwide [1]. us, the study of heart diseases including cardiac arrhythmia, which progressively leads to HF condition, is very important. Two types of cardiac therapy devices are commonly used to treat patients with cardiac disease: cardiac resynchronization therapy (CRT) and left ventricular assist device (LVAD). CRT is considered as a valuable treatment for patients with dyssynchrony HF with QRS interval >120 ms and left ventricular ejection fraction (EF)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.