Abstract

BackgroundAuxiliary splicing sequences play an important role in ensuring accurate and efficient splicing by promoting or repressing recognition of authentic splice sites. These cis-acting motifs have been termed splicing enhancers and silencers and are located both in introns and exons. They co-evolved into an intricate splicing code together with additional functional constraints, such as tissue-specific and alternative splicing patterns. We used orthologous exons extracted from the University of California Santa Cruz multiple genome alignments of human and 22 Tetrapoda organisms to predict candidate enhancers and silencers that have reproducible and statistically significant bias towards annotated exonic boundaries.ResultsA total of 2,546 Tetrapoda enhancers and silencers were clustered into 15 putative core motifs based on their Markov properties. Most of these elements have been identified previously, but 118 putative silencers and 260 enhancers (~15%) were novel. Examination of previously published experimental data for the presence of predicted elements showed that their mutations in 21/23 (91.3%) cases altered the splicing pattern as expected. Predicted intronic motifs flanking 3' and 5' splice sites had higher evolutionary conservation than other sequences within intronic flanks and the intronic enhancers were markedly differed between 3' and 5' intronic flanks.ConclusionDifference in intronic enhancers supporting 5' and 3' splice sites suggests an independent splicing commitment for neighboring exons. Increased evolutionary conservation for ISEs/ISSs within intronic flanks and effect of modulation of predicted elements on splicing suggest functional significance of found elements in splicing regulation. Most of the elements identified were shown to have direct implications in human splicing and therefore could be useful for building computational splicing models in biomedical research.

Highlights

  • Auxiliary splicing sequences play an important role in ensuring accurate and efficient splicing by promoting or repressing recognition of authentic splice sites

  • Using the orthologous exons currently available for 23 Tetrapoda organisms we have identified 2,546 unique splicing regulatory elements

  • We detected intersections with some of the cis-acting elements reported in the previous studies, but not nearly as dramatic as we saw between the intronic elements predicted for primates and Tetrapoda non-eutherian clades

Read more

Summary

Introduction

Auxiliary splicing sequences play an important role in ensuring accurate and efficient splicing by promoting or repressing recognition of authentic splice sites These cis-acting motifs have been termed splicing enhancers and silencers and are located both in introns and exons. BMC Genomics 2009, 10:508 http://www.biomedcentral.com/1471-2164/10/508 elements [1,2,3] These conserved but degenerate motifs have been termed exonic (ESEs) and intronic (ISEs) splicing enhancers and exonic (ESSs) and intronic (ISSs) splicing silencers that activate or repress splicing, respectively. These elements are thought to bind splicing regulatory factors, including the serine/arginine-rich (SR) proteins and the heterogeneous nuclear ribonucleoproteins [1]. Combinatorial interaction of splicing factors bound by these motifs is important for both constitutive and alternative splicing of pre-mRNAs because they contribute to the regulation of gene expression and proteomic diversity across higher eukaryotes [3,4,5,6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.