Abstract

Protein-carbohydrate interaction is essential for biological systems, and carbohydrate-binding proteins (CBPs) are important targets when designing antiviral and anticancer drugs. Due to the high cost and difficulty associated with experimental approaches, many computational methods have been developed as complementary approaches to predict CBPs or carbohydrate-binding sites. However, most of these computational methods are not publicly available. Here, we provide a comprehensive review of related studies and demonstrate our two recently developed bioinformatics methods. The method SPOT-CBP is a template-based method for detecting CBPs based on structure through structural homology search combined with a knowledge-based scoring function. This method can yield model complex structure in addition to accurate prediction of CBPs. Furthermore, it has been observed that similarly accurate predictions can be made using structures from homology modeling, which has significantly expanded its applicability. The other method, SPRINT-CBH, is a de novo approach that predicts binding residues directly from protein sequences by using sequence information and predicted structural properties. This approach does not need structurally similar templates and thus is not limited by the current database of known protein-carbohydrate complex structures. These two complementary methods are available at https://sparks-lab.org. © 2018 by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.