Abstract

A major biochemical goal is the ability to mimic nature in engineering highly specific protein-protein interactions (PPIs). We previously devised a computational interactome screen to identify eight peptides that form four heterospecific dimers despite 32 potential off-targets. To expand the speed and utility of our approach and the PPI toolkit, we have developed new software to derive much larger heterospecific sets (≥24 peptides) while directing against antiparallel off-targets. It works by predicting Tm values for every dimer on the basis of core, electrostatic, and helical propensity components. These guide interaction specificity, allowing heterospecific coiled coil (CC) sets to be incrementally assembled. Prediction accuracy is experimentally validated using circular dichroism and size exclusion chromatography. Thermal denaturation data from a 22-CC training set were used to improve software prediction accuracy and verified using a 136-CC test set consisting of eight predicted heterospecific dimers and 128 off-targets. The resulting software, qCIPA, individually now weighs core a-a' (II/NN/NI) and electrostatic g-e'+1 (EE/EK/KK) components. The expanded data set has resulted in emerging sequence context rules for otherwise energetically equivalent CCs; for example, introducing intrahelical electrostatic charge blocks generated increased stability for designed CCs while concomitantly decreasing the stability of off-target CCs. Coupled with increased prediction accuracy and speed, the approach can be applied to a wide range of downstream chemical and synthetic biology applications, in addition more generally to impose specificity on structurally unrelated PPIs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call