Abstract
Huge volumes of data, produced by microarrays and next- generation sequencing, are now at the fingertips of scientists and allow to expand the scope beyond conventional drug de- sign. New promiscuous drugs directed at multiple targets promise increased therapeutic efficacy for treatment of multi- factorial diseases. At the same time, more systematic tests for unwanted side effects are now possible. In this paper, we focus on the application of text mining and ontologies to support experimental drug discovery. Text mining is a high- throughput technique to extract information from millions of scientific documents and web pages. By exploiting the vast number of extracted facts as well as the indirect links between them, text mining and ontologies help to generate new hypotheses on drug target interactions. We review latest applications of text mining and ontologies suitable for target and drug-target interaction discovery in addition to conventional approaches. We conclude that mining the literature on drugs and proteins offers unique opportunities to support the laborious and expensive process of drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.