Abstract

We introduce an error resilient distributed computing method based on an extension of the channel polarization phenomenon to distributed algorithms. The method leverages an algorithmic split operation that transforms two identical compute nodes into slow and fast workers, which parallels the channel split operation in Polar Codes. This operation preserves the average runtime, analogous to the conservation of Shannon capacity in channel polarization. By leveraging a recursive construction in a similar spirit to the Fast Fourier Transform, the method synthesizes virtual compute nodes with dispersed return time distributions, which we call computational polarization. We show that the runtime distributions form a functional martingale process, identify their limiting distributions in closed-form expressions together with non-asymptotic convergence rates, and prove strong convergence results in Banach spaces. We provide an information-theoretic lower bound on the overall runtime of any coded computation method and show that the computational polarization approach asymptotically achieves the optimal runtime for computing linear functions. An important advantage is the near linear time decoding procedure, which is significantly faster than Maximum Distance Separable codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.