Abstract

BackgroundThe present pandemic COVID-19 is caused by SARS-CoV-2, a single-stranded positive-sense RNA virus from the Coronaviridae family. Due to a lack of antiviral drugs, vaccines against the virus are urgently required.MethodsIn this study, validated computational approaches were used to identify peptide-based epitopes from six structural proteins having antigenic properties. The Net-CTL 1.2 tool was used for the prediction of CD8+ T-cell epitopes, while the robust tools Bepi-Pred 2 and LBtope was employed for the identification of linear B-cell epitopes. Docking studies of the identified epitopes were performed using HADDOCK 2.4 and the structures were visualized by Discovery Studio and LigPlot+. Antigenicity, immunogenicity, conservancy, population coverage and allergenicity of the predicted epitopes were determined by the bioinformatics tools like VaxiJen v2.0 server, the Immune Epitope Database tools and AllerTOP v.2.0, AllergenFP 1.0 and ElliPro.ResultsThe predicted T cell and linear B-cell epitopes were considered as prime vaccine targets in case they passed the requisite parameters like antigenicity, immunogenicity, conservancy, non-allergenicity and broad range of population coverage. Among the predicted CD8+ T cell epitopes, potential vaccine targets from surface glycoprotein were; YQPYRVVVL, PYRVVVLSF, GVYFASTEK, QLTPTWRVY, and those from ORF3a protein were LKKRWQLAL, HVTFFIYNK. Similarly, RFLYIIKLI, LTWICLLQF from membrane protein and three epitopes viz; SPRWYFYYL, TWLTYTGAI, KTFPPTEPK from nucleocapsid phosphoprotein were the superior vaccine targets observed in our study. The negative values of HADDOCK and Z scores obtained for the best cluster indicated the potential of the epitopes as suitable vaccine candidates. Analysis of the 3D and 2D interaction diagrams of best cluster produced by HADDOCK 2.4 displayed the binding interaction of leading T cell epitopes within the MHC-1 peptide binding clefts. On the other hand, among linear B cell epitopes the majority of potential vaccine targets were from nucleocapsid protein, viz; 59−HGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLS−105, 227−LNQLE SKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATK−266, 3−DNGPQNQRNAPRITFGGP−20, 29−GERSGARSKQRRPQGL−45. Two other prime vaccine targets, 370−NSASFSTFKCYGVSPTKLNDLCFTNV−395 and 260−AGAAAYYVGYLQPRT−274 were identified in the spike protein. The potential B-cell conformational epitopes were predicted on the basis of a higher protrusion index indicating greater solvent accessibility. These conformational epitopes were of various lengths and belonged to spike, ORF3a, membrane and nucleocapsid proteins.ConclusionsTaken together, eleven T cell epitopes, seven B cell linear epitopes and ten B cell conformational epitopes were identified from five structural proteins of SARS-CoV-2 using advanced computational tools. These potential vaccine candidates may provide important timely directives for an effective vaccine against SARS-CoV-2.

Highlights

  • The present dreaded pandemic of coronavirus disease 2019 (COVID-19) has resulted in the deaths of more than 445,000 humans (World Health Organization, 2019)

  • Antigenicity, immunogenicity, conservancy, population coverage and allergenicity of the predicted epitopes were determined by the bioinformatics tools like VaxiJen v2.0 server, the Immune Epitope Database tools and AllerTOP v.2.0, AllergenFP 1.0 and ElliPro

  • The scientific and clinical investigations demonstrated that severe acute respiratory syndrome (SARS)-CoV and Middle East Respiratory Syndrome (MERS)-CoV share remarkable features that lead to preferential viral replication in the lower respiratory tract and viral immunopathology

Read more

Summary

Introduction

The present dreaded pandemic of coronavirus disease 2019 (COVID-19) has resulted in the deaths of more than 445,000 humans (World Health Organization, 2019). The causative agent of the disease has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (World Health Organization, 2019). The most recent cases of fatal disease outbreaks caused by corona virus occurred in December 2019, in Wuhan, Hubei, China. These consecutive viral outbreaks indicate the threat of cross-species transmission of these viruses leading to severe infectious outbreak in humans that should be considered seriously (Menachery et al, 2015). The genome sequences of COVID-19 viruses obtained from patients indicated that they share 79.5% sequence identity to SARS-CoV (Zhou et al, 2020) and a 96% identity to bat corona virus at the whole genome level. Two other prime vaccine targets, 370−NSASFSTFKCYGVSPTK LNDLCFTNV−395 and 260−AGAAAYYVGYLQPRT−274 were identified in the spike

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.