Abstract

Origami‐based metamaterials have widespread application prospects in various industries including aerospace, automotive, flexible electronics, and civil engineering structures. Among the wide range of origami patterns, the fourfold tessellation known as Miura‐ori is of particular attraction to engineers and designers. More specifically, researchers have proposed different 3D structures and metamaterials based on the geometric characteristics of this classic origami pattern. Herein, a computational modeling approach for the design and evaluation of 3D cellular solids with the Miura‐ori metamaterial geometry which can be of zero or nonzero thicknesses is presented. To this end, first, a range of design alternatives generated based on a numerical parametric model is designed. Next, their mechanical properties and failure behavior under quasistatic axial compressive loads along three perpendicular directions are analyzed. Then, the effects of various geometric parameters on their energy absorption behavior under compression in the most appropriate direction are investigated. The findings of this study provide a basis for future experimental investigations and the potential application of such cellular solids for energy‐absorbing purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.