Abstract
The aim of this work is computationally to correlate the synchronized neuronal activity of basal ganglia and slowing in theta and alpha rhythms in electroencephalogram (EEG) signal in thalamic region in case of dopamine depletion and decrease of synaptic connections. The used network topology is a scale-free network with constant node degree. The dopamine-modulated type Izikhevich neuron model is used for modeling the striatal region, consisting of fast-spiking interneurons, D1 and D2 type dopamine expressing medium spiny neurons. On the other hand, the ordinary Izikhevich neuron model is used in the modeling of extrastriatal basal ganglia (BG) regions where globus pallidus (GP) subregion neurons have also dopamine-dependent parameters. The thalamic region of the network is mass modeled including inhibitory input from basal ganglia. Depending on the decrease of synaptic connections and dopamine level, the synchronization among basal ganglia neuron populations is investigated. The effect of synaptic delay on synchronization is also considered. It is observed that the decrease of dopamine neurotransmitter and decrease in the number of synaptic connections cause an increased synchronous activity in BG. Also, slowing in theta and alpha bands in thalamus EEG signals is observed. This shows the causal relation between synchronization and power shifting to lower frequency components in the case of neurodegenerative diseases such as Parkinson's disease (PD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.