Abstract
In this paper, the piezoresistive response (i.e. the change of resistance under the application of strain) of polymer composites reinforced by a novel material known as fuzzy fibers is characterized by using single tow piezoresistive fragmentation tests and modeled by using a 3D computational multiscale model based on the finite element analysis. In the characterization work, the fuzzy fiber tow is embedded in a dog-bone specimen infused by epoxy, with resistance and displacement measured simultaneously to obtain its piezoresistive response. An approximately linear and stable piezoresistive response is observed within the fuzzy fiber tow region yielding gauge factors on average of 0.14. Using a 3D multiscale mechanical–electrostatic coupled code and explicitly accounting for the local piezoresistive response of the anisotropic interphase region, the piezoresistive responses of the overall fuzzy fiber reinforced polymer composites are studied parametrically in an effort to provide qualitative guidance for the manufacture of fuzzy fiber reinforced polymer composites. It is observed from the model that the fuzzy fiber reinforced polymer composites with cylindrically orthotropic carbon nanotube interphase regions are dominated by the electrical tunneling effect between the nanotubes and can yield very large gauge factors while fuzzy fibers with randomly oriented carbon nanotubes in the interphase region yield smaller gauge factors as the material is electrically saturated by the carbon nanotubes. Finally, the modeling efforts provide plausible reasons for the observed small gauge factors in experiments in the form of a combination of high concentration randomly oriented carbon nanotube interphase regions separated by sparse nanotube regions along the fuzzy fiber length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.