Abstract

Moisture considerably affects the macroscopic material behavior of wood. Since moisture takes effect on wood at various length scales, a computational multiscale approach is presented in this paper in order to explain and mathematically describe the macroscopic mechanical and transport behavior of wood. Such an approach allows for appropriate consideration of the underlying physical phenomena and for the suitable representation of the influence of microstructural characteristics of individual wood tissues on the macroscopic behavior. Continuum (poro-)micromechanics is applied as homogenization technique in order to link properties at different length scales. Building the model on universal constituents with tissue-independent properties and on universal building patterns, the only tissue-dependent input parameters are wood species, mass density, moisture content, and temperature. All these parameters are easily accessible, what renders the models powerful and easily applicable tools for practical timber engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call