Abstract

AbstractDynamic shearing banding and fracturing in unsaturated porous media are significant problems in engineering and science. This article proposes a multiphase micro‐periporomechanics (PPM) paradigm for modeling dynamic shear banding and fracturing in unsaturated porous media. Periporomechanics (PPM) is a nonlocal reformulation of classical poromechanics to model continuous and discontinuous deformation/fracture and fluid flow in porous media through a single framework. In PPM, a multiphase porous material is postulated as a collection of a finite number of mixed material points. The length scale in PPM that dictates the nonlocal interaction between material points is a mathematical object that lacks a direct physical meaning. As a novelty, in the coupled PPM, a microstructure‐based material length scale is incorporated by considering micro‐rotations of the solid skeleton following the Cosserat continuum theory for solids. As a new contribution, we reformulate the second‐order work for detecting material instability and the energy‐based crack criterion and J‐integral for modeling fracturing in the PPM paradigm. The stabilized Cosserat PPM correspondence principle that mitigates the multiphase zero‐energy mode instability is augmented to include unsaturated fluid flow. We have numerically implemented the novel PPM paradigm through a dual‐way fractional‐step algorithm in time and a hybrid Lagrangian–Eulerian meshfree method in space. Numerical examples are presented to demonstrate the robustness and efficacy of the proposed PPM paradigm for modeling shear banding and fracturing in unsaturated porous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call