Abstract

AbstractUnderstanding the mechanism of mechanobiological processes at the molecular level is an important challenge in modern biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature of mechanobiological processes makes it difficult to meet such challenge in many systems of interest. Recently, a continuum-mechanics based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical system, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been testified and new insights deduced. This article reviews these latest findings and suggests possible improvements for future modeling work. The computationally efficient and versatile continuum-based protocol is expected to make contributions to a variety of mechanobiology problemsKeywordsMolecular biomechanicsComputationMechanosensitive channel

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.