Abstract

Computational and mathematical modelling towards understanding the structure and dynamics of biological systems has significantly impacted on translational neuroscience to face novel approaches toward neurological disorders such as Alzheimer’s (AD) and Parkinson’s disease (PD). In this study, a computational model of AD and PD have been modelled using biochemical systems theory, and shows how Tumour Necrosis Factor alpha (TNF훼) regulated neuroinflammation, oxidative stress and insulin pathways can dysregulate its downstream signalling cascade that lead to neurodegeneration observed in AD and PD. The experimental data for initial conditions for this model and validation of the model was based on data reported in literature. In simulations, elevations in the aggregations of major proteins involved in the pathology of AD and PD including amyloid beta, alpha synuclein, tau have been modelled. Abnormal aggregation of these proteins and hyperphosphorylation of tau were observed in the model. This aggregation may lead to developing Lewy bodies, fibrils, plaques and tangles inside neurons that trigger apoptosis. An increase in the concentrations of TNF훼 and glutamate during diseased conditions was noted in the model. Accumulation of these proteins may be related to the feedback mechanism of TNF훼 that initiates its own release and the production of excess glutamate. This could lead to the prolonged activation of microglia that result in death of surrounding neurons. With the elevation in reactive oxygen species, oxidative stress also increased. Simulations suggest insulin may be an important factor identifying neurodegeneration in AD and PD, through its action along with the neuroinflammation and oxidative stress. Low insulin level was noticed in the diseased condition due to abnormal protein aggregation that leads to TNFα release. Given the role towards better design of real experiments, accumulation of oligomers of mutated proteins in AD and PD activating microglia and secreting TNFα along with other cytokines map to oxidative stress that led to cell death.

Highlights

  • Alzheimer’s disease (AD) is a major neurodegenerative disorder often related to the deposition of amyloid β-peptide (Aβ) plaques in brain tissue followed by formation of neurofibrillary tangles (Murphy and Levine 2010) and is associated to symptoms such as memory loss, alterations in mood and behavior and have been associated with, dementia, disorientation and aphasia (Jahn 2013)

  • To extend the relationships between AD and Parkinson’s disease (PD), this present study focuses on developing a model of TNFα related pathways regulated by neuroinflammation, oxidative stress and insulin resistance during neurodegeneration

  • Major pathways involved in TNFα signalling regulated by inflammation, oxidative stress and insulin resistance that leads to neuronal death were modelled in this paper using biochemical systems theory

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a major neurodegenerative disorder often related to the deposition of amyloid β-peptide (Aβ) plaques in brain tissue followed by formation of neurofibrillary tangles (Murphy and Levine 2010) and is associated to symptoms such as memory loss, alterations in mood and behavior and have been associated with, dementia, disorientation and aphasia (Jahn 2013). Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder that causes death of dopaminergic neurons in substantia nigra pars compacta of the midbrain, which leads to the decline in the synthesis of dopamine (Mhyre et al 2012). It is characterised by a large number of motor and non-motor features and by the increase in incidence above the age of 65 (Mahlknecht et al 2015). There is evidence that amyloid β oligomers contribute chronic neurological manifestations, they are difficult to be detected by conventional staining techniques (Ferreira et al 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call