Abstract

Tunnel enlargement and graft failure are common complications associated with ACL reconstruction. The mechanical interaction between the graft and the tunnel aperture may play a more important role. This study aims to evaluate graft position within femoral tunnel and the graft force under external loads. An FE model of the femur-graft-tibia complex was constructed from CT images of an anatomically reconstructed knee specimen. The model was subjected to kinematics of passive flexion extension, anterior/posterior translation, internal/external rotation and valgus kinematics, which were collected from experimental testing. Graft shift and rotation of graft-tunnel contact region during flexion/extension and external loadings were recorded and compared to experimental measurements. Model showed that the graft shifted in the femoral tunnel during flexion and under external loads. The graft-tunnel contact area rotated by up to 55° during flexion from full extension to 90° of extension implying that the so-called "wiper effect" occurs during most of flexion angles. Different regions of the femoral tunnel aperture, particularly the anterior region, were under significantly more contact force from the graft than other areas of the aperture during the anterior translation test, potentially leading to femoral tunnel enlargement to the anterior side of the aperture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.