Abstract

ABSTRACT In this paper, we present a systematic roadmap for developing a robust and parallel multi-material reactive hydrodynamic solver that integrates historically stable algorithms with new and current modern methods to solve explosive system design problems. The Ghost Fluid Method and Riemann solvers were used to enforce appropriate interface boundary conditions. Improved performance in terms of computational work and convergence properties was achieved by modifying a local node sorting strategy that decouples ghost nodes, allowing us to set material boundary conditions via an explicit procedure, removing the need to solve a coupled system of equations numerically. The locality and explicit nature of the node sorting concept allows for greater levels of parallelism and lower computational cost when populating ghost nodes. Non-linear numerical issues endemic to the use of real Equations of State in hydro-codes were resolved by using more thermodynamically consistent forms allowing us to accurately resolve large density gradients associated with high energy detonation problems at material interfaces. Pre-computed volume tables were implemented adding to the robustness of the solver base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.