Abstract
The operating principles of complex regulatory networks are best understood with the help of mathematical modelling rather than by intuitive reasoning. Hereby, we study the dynamics of the mitotic exit (ME) control system in budding yeast by further developing the Queralt's model. A comprehensive systems view of the network regulating ME is provided based on classical experiments in the literature. In this picture, Cdc20-APC is a critical node controlling both cyclin (Clb2 and Clb5) and phosphatase (Cdc14) branches of the regulatory network. On the basis of experimental situations ranging from single to quintuple mutants, the kinetic parameters of the network are estimated. Numerical analysis of the model quantifies the dependence of ME control on the proteolytic and non-proteolytic functions of separase. We show that the requirement of the non-proteolytic function of separase for ME depends on cyclin-dependent kinase activity. The model is also used for the systematic analysis of the recently discovered Cdc14 endocycles. The significance of Cdc14 endocycles in eukaryotic cell cycle control is discussed as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.